Abstract
In this work, we perform a comparative analysis between single and dual metal dielectrically modulated tunnel field-effect transistors (DMTFETs) for the application of label free biosensor. For this purpose, two different gate material with work-function as ϕM1 and ϕM2 are used in short-gate DMTFET, where ϕM1 represents the work-function of gate M1 near to the drain end, while ϕM2 denotes the work-function of gate M2 near to the source end. A nanogap cavity in the gate dielectric is formed by removing the selected portion of gate oxide for sensing the biomolecules. To investigate the sensitivity of these biosensors, dielectric constant and charge density within the cavity region are considered as governing parameters. The work-function of gate M2 is optimized and considered less than M1 to achieve abruptness at the source/channel junction, which results in better tunneling and improved ON-state current. The ATLAS device simulations show that dual metal SG-DMTFETs attains higher ON-state current and drain current sensitivity as compared to its counterpart device. Finally, a dual metal short-gate (DSG) biosensor is compared with the single metal short-gate (SG), single metal full-gate (FG), and dual metal full-gate (DFG) biosensors to analyse structurally enhanced conjugation effect on gate-channel coupling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.