Abstract

Purpose: More and more data are stored in text form due to technological developments, making text data processing more difficult. It also causes problems in the text preprocessing algorithm, one of which is when two texts are identical, but are considered distinct by the algorithm. Therefore, it is necessary to normalize the text to get the standard form of words in a particular language. Spelling correction is often used to normalize text, but for Bahasa Indonesia, there has not been much research on the spell correction algorithm. Thus, there needs to be a comparison of the most appropriate spelling correction algorithms for the normalization process to be effective.Methods: In this study, we compared three algorithms, namely Levenshtein Distance, Jaro-Winkler Distance, and Smith-Waterman. These algorithms were evaluated using questionnaire data and tweet data, which both are in Bahasa Indonesia.Result: The fastest normalization time is obtained by the Jaro-Winkler, taking an average of 31.01 seconds for questionnaire data and 59.27 seconds for tweet data. The best accuracy is obtained by the Levenshtein Distance with a value of 44.90% for the questionnaire data and 60.04% for the tweet data. Novelty: The novelty of this research is to compare the similarity measure algorithm in Bahasa Indonesia. Therefore, the most suitable similarity measure algorithm for Bahasa Indonesia will be obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.