Abstract
SUMMARYThe purpose of this study is to examine the influence of the shape of the cross‐section of a scramjet engine‐driven experimental diagonal conducting wall (DCW)‐MHD generator on generator performance by three‐dimensional numerical analyses. We have designed MHD generators with symmetric square and circular cross‐sections, based on an experimental MHD generator with an asymmetric square cross‐section. Under the optimum load conditions, the electric power output reaches 26.6 kW for the asymmetric square cross‐section, 24.6 kW for the symmetric square cross‐section, and 22.4 kW for the circular cross‐section. The highest output is obtained for the experimental generator with the asymmetric square cross‐section. The difference in the electric power output is induced by the difference of flow velocity and boundary layer thickness. For the generator with the asymmetric square cross‐section, the average flow velocity is highest and the boundary layer is thinnest. The compression wave is generated with dependence on the channel shape. The difference in the flow velocity and boundary layer thickness is induced by the superposition of the compression wave. © 2014 Wiley Periodicals, Inc. Electr Eng Jpn, 187(2): 9–16, 2014; Published online in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/eej.22403
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.