Abstract

Stroke is the second most common cause of death globally, making up about 11% of all deaths from health-related deaths each year, the condition varies from mild to severe, with the potential for permanent or temporary damage, caused by non-traumatic cerebral circulatory disorders. This research began with data understanding through the acquisition of a stroke patient health dataset from Kaggle, consisting of 5110 records. The pre-processing stage involved transforming the data to optimize processing, converting numeric attributes to nominal, and preparing training and test data. The focus then shifted to stroke disease classification using Random Forest, Support Vector Machines, and Neural Networks algorithms. Data processing results from the Kaggle dataset showed high performance, with Random Forest achieving 98.58% accuracy, SVM 94.11%, and Neural Network 95.72%. Although SVM has the highest recall (99.41%), while Random Forest and ANN have high but slightly lower recall rates, 98.58% and 95.72% respectively. Model selection depends on the needs of the application, either focusing on precision, recall, or a balance of both. This research contributes to further understanding of stroke diagnosis and introduces new potential for classifying the disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call