Abstract

This study evaluated the photobiocidal performance of four widely distributed visible-light-activated (VLA) dyes against two bacteria (Staphylococcus epidermidis and Escherichia coli) and two bacteriophages (phages MS2 and phi 6): rose bengal (RB), crystal violet, methylene blue, and toluidine blue O (TBO). The photobiocidal performance of each dye depended on the relationship between the type of dye and microorganism. Gram-negative E. coli and the non-enveloped structure of phage MS2 showed more resistance to the photobiocidal reaction than Gram-positive S. epidermidis and the enveloped structure of phage phi 6. RB had the highest potential to yield reactive oxygen species. However, the photobiocidal performance of RB was dependent on the magnitude of the surface charge of the microorganisms; for example, anionic RB induced a negative surface charge and thus electrical repulsion. On the other hand, the photobiocidal performance of TBO was observed to be less affected by the microorganism type. The comparative results presented in our study have significant implications for selecting photodynamic antimicrobial chemotherapy (PACT) dyes suitable for specific situations and purposes. Furthermore, they contribute to the advancement of PACT-related technologies by enhancing their applicability and scalability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call