Abstract
Our study is aimed at modeling the effect of three contributory factors, namely aspect ratio, water cement ratio and cement content on the water intake/absorption, compressive strength, flexural strength, split tensile strength and slump properties of steel fiber reinforced concrete. Artificial neural network (ANN) as a multilayer perceptron normal feed forward network was integrated to develop a predictive model for the aforementioned properties. Five training algorithms belonging to three classes: gradient descent, Levenberg Marquardt (quasi Newton) and genetic algorithm (GA). The ANN configuration consists of the input layer with three nodes, a single hidden layer of ten nodes of the output layer with five nodes. The study also compared the performance of all algorithms with regards to their predicting abilities. The ANN training was done by splitting the experimental data into the training and testing set. The divergence of the RMSE between the output and target values of the test set was monitored and used as a criterion to stop training. Although the convergence speed of GA was far higher than all other training algorithm, it performed better in predicting the water intake/absorption, split tensile strength and slump properties. However, incremental back propagation (IBP) and batch back propagation (BBP) outperformed GA in predicting the compressive strength and flexural strength respectively. The overall performance of the training algorithm was assessed using the coefficient of determination and the absolute fraction of variance obtained for the test data set and GA was found to have the highest value of 0.94 and 0.92 respectively. In determining the properties fiber reinforced concrete according to GA–ANN implementation, the water/cement ratio played slightly more dominant role than the aspect ratio and this was followed by cement content.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.