Abstract

This work aims to compare the performance of the traditional portfolios of the S&P500, Markowitz, and Sharpe with the multifractal trend fluctuation portfolios (MF-DFA) and portfolios of artificial neural networks with Student's asymmetric probability classification (ANN-t). In this study, we use daily data for S&P500 stocks between January 18, 2018, and July 12, 2022, where we backtest return and risk metrics such as annual volatility, Value at Risk, Sharpe Ratio, Sortino Ratio, Beta, and Jensen´s Alpha. For both return and risk, we obtain the results confirming that the ANN-t technique might indicate better investment entries, which contradicts the Efficient Market Hypothesis (EMH).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.