Abstract

Channel estimation at the receiver side is essential for adaptive modulation schemes, prohibiting low complexity systems from using variable rate (VR) and/or variable power transmissions. This problem can be solved using variable-rate M-QAM modulation scheme for communications over fading channels in the absence of channel gain estimation at the receiver. It is shown that signal plus noise (S + N) sampling value can serve as a much better criterion compared to signal-to-noise ratio (S/N) for determining modulation order in VR systems. In this way, low complexity transceivers use VR transmissions to improve spectrum efficiency under an error performance constraint. Two kinds of fading channels: Weibull fading and α–μ fading are considered. Spectrum efficiency of (S + N) based systems are compared to that of S/N systems and the advantage of (S + N) scheme over (S/N) scheme is shown. The symbol error rates of two schemes are also studied. As an application, the proposed VR modulation scheme is shown to work with a maximum ratio combining diversity receiver.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.