Abstract
An experimental study on the performance comparison of microchannel evaporators with refrigerant R-22 was conducted. Six microchannel evaporators were designed and manufactured for a residential air-conditioner. They were tested with psychrometric calorimeter test facilities. The experiment was performed with both vapor compression system and refrigerant circulation system. Each evaporator was made up of two parallel flow heat exchangers connected with several return pipes. The parallel flow heat exchanger had 41 microchannel tubes inserted between inlet and outlet headers. The microchannel tube had 8 rectangular ports with the hydraulic diameter of 1.3 mm. For the vapor compression system, the flow area ratio and the number of return pipes had a great effect on the cooling capacity. Type 3 with a flow area ratio of 73% and 58% showed the best cooling capacity. It had 12 return pipes and 3 circuits. There is a merging manifold in it. The effect of the number of circuits and merging manifold on the cooling capacity was relatively small. For the refrigerant circulation system, the effect of the mass flow rate on the cooling capacity was slightly superior to that of inlet quality. The effect of the number of circuits on the cooling capacity was different from the result of the vapor compression system. The effect of merging manifold was negligible, which was consistent with the result of the vapor compression system. The cooling capacity proportionally increased as the vertical inclination angle of the evaporator increased due to gravity force.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.