Abstract

The forward-only iterative decoding techniques for convolutional self-doubly-orthogonal codes are systematically presented based on one-step belief propagation (BP) decoding and one-step threshold decoding. A feedback mechanism and a weighing technique are examined in order to improve both the convergence speed and error performance. Computer simulation results show that compared with the iterative threshold decoding over an additive white Gaussian noise channel, the iterative BP decoding for these codes achieves essentially the same error performance while requiring only about half the number of iterations. Therefore, these two iterative decoding techniques can provide a tradeoff between the latency and the complexity of decoding and allow for the applications of these codes in very high speed wireless communications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.