Abstract
The principal purpose of this paper is to incorporate digital filters in the preprocessing of electroencephalogram (EEG) signal to remove deep brain stimulation (DBS) artifact. DBS is used in the treatment of Parkinson’s disease (PD). During the monitoring of EEG, various stimulation artifacts may overlap with EEG signal. Therefore, a filter is required, which can effectively eliminate these artifacts with the least distorting EEG signal. In the present work, performance comparison of Hampel and median filters is carried out to eliminate these artifacts. The effectiveness of these filters is tested on different types of signals: sinusoidal, synthetic EEG signals. Further, these filters are tested on real EEG signals corrupted with DBS noise. These signals are acquired from patients under the treatment for PD. The performance comparison of filters is evaluated on the basis of signal-to-noise ratio (SNR), SNR improvement (SNRI), mean square error (MSE), and signal distortion. The results reveal that Hampel filter removes the noise more efficiently as compared to median filter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.