Abstract
This paper evaluates and discusses how different GPU programming frameworks affect the performance obtained from GPU acceleration of the striped smith-waterman algorithm used for biological sequence alignment. A total of 6 GPU implementations of the algorithm on NVIDIA GT200b and AMD RV870 using the CUDA and the OpenCL frameworks are compared to analyze cons and pros of explicit descriptions for architecture specific hardware mechanisms in the code. The evaluation results show that the primitive descriptions with the CUDA are still efficient especially for small size data, while better instruction scheduling and optimizations are carried out by the OpenCL compiler. On the other hand, the combination of OpenCL and RV870 which provides a relatively simple view of the architecture is efficient for the large data size.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.