Abstract

A newly proposed distributed dynamic state estimation algorithm based on the maximum a posteriori (MAP) technique is generalised and studied for power systems. The system model involves linear time-varying load dynamics and nonlinear measurements. The main contribution of this paper is to compare the performance and feasibility of this distributed algorithm with several existing distributed state estimation algorithms in the literature. Simulations are tested on the IEEE 39-bus and 118-bus systems under various operating conditions. The results show that this distributed algorithm performs better than distributed quasi-steady state estimation algorithms which do not use the load dynamic model. The results also show that the performance of this distributed method is very close to that by the centralized state estimation method. The merits of this algorithm over the centralized method lie in its low computational complexity and low communication load. Hence, the analysis supports the efficiency and benefits of the distributed algorithm in applications to large-scale power systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.