Abstract

The performance of bandwidth-efficient Reed-Solomon (RS)-coded MPSK schemes is evaluated on a shadowed Rician fading channel using different decoding strategies, namely, errors-only, errors-and-erasures, and soft-decision decoding. The lower bounds of the bit error probability are found for errors-only and for errors-and-erasures decoding. For the soft-decision decoding the upper bound of the bit error rate is derived. The error bounds are calculated and examined by simulation for some RS-coded MPSK schemes on a shadowed Rician channel. It is shown that their performance is significantly improved compared to uncoded QPSK. The amount of improvement depends on the signal-to-noise ratio (SNR), the decoding strategy, and the degree of shadowing. A comparison between different decoding techniques, for one of the RS-coded schemes, for different degrees of shadowing shows that the use of channel measurement information in the decoding process is more effective for heavy shadowed channels. >

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call