Abstract

Currently, damage in aging bridges is assessed visually, leading to significant personnel, time, and cost expenditures. Moreover, the results depend on the subjective judgment of the inspector. Machine-learning-based approaches, such as deep learning, can solve these problems. In particular, instance-segmentation models have been used to identify different types of bridge damage. However, the value of deep-learning-based damage identification may be reduced by insufficient training data, class imbalance, and model-reliability issues. To overcome these limitations, this study utilized photographic data from real bridge-management systems for the inspection and assessment of bridges as the training dataset. Six types of damage were considered. Moreover, the performances of three representative deep learning models—Mask R-CNN, BlendMask, and SWIN—were compared in terms of loss–function values. SWIN showed the best performance, achieving a loss value of 0.000005 after 269,939 training iterations. This shows that bridge-damage-identification performance can be maximized by setting an appropriate learning rate and using a deep learning model with a minimal loss value.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call