Abstract

This paper investigates formation control of multiple nonholonomic differential drive wheeled mobile robots (WMRs). Assume the communication between the mobile robots is possible where the leader mobile robot can share its state values to the follower mobile robots using the leader-follower notion. Two approaches are discussed for controlling a formation of nonholonomic WMRs. The first approach is consensus tracking based on graph theory concept, where the linear and angular velocity input of each follower are formulated using first order consensus protocol, such that the heading angle and velocity of the followers are synchronized to the corresponding values of the leader mobile robot. The second is l-φ approach (distance angle) that is developed based on Lyapunov analysis, where the linear and angular velocity inputs of each follower mobile robot are adjusted such that the followers keep a desired separation distance and deviation angle with respect to the leader robot, and the overall system is asymptotically stable.The aim of this paper is to compare the performances of the presented methods for controlling a formation of wheeled mobile robots with matlab simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call