Abstract
For further knowledge about the refining performance of AlTiC master alloys, A15.5Ti0.25C and A16.5Ti0.5C master alloys containing high Ti and C content were prepared and used in grain refining experiments of 99.8% commercial pure aluminum(CPAl). Their performance was compared with two types of Al5Ti1B refiners whose performance was nowadays considered to be the best. These two types of master alloys show similar refining efficiency at the addition level of 0.2%. However, at the addition level of 0.5%, there still exists great performance difference between AlTiC and Al5TiB alloys in grain refinement of 99.98% and 99.995% high purity aluminum(HPAl). The growth of columnar grains is fully suppressed due to the refinement of AlTiC at the addition level of 0.5%. Also, at the same addition level, the grain refining experiments of A13Ti0.15C and A15Ti0.2C master alloys which have found initial commercial applications are conducted in the above-mentioned three types of pure aluminum. According to the experimental results, these two refiners of different compositions are both nonideal. The second phase particles extracted from each refiner were observed through TEM, while the nuclei of grains after grain refinement were observed through SEM. The results were analyzed through computation and comparison of the constitutional-supercooling parameter and the growth-restriction parameter whose values were determined by solute element in aluminum melt with different purity. Apparently, AlTiC master alloys with high content of Ti and C element have great refining potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transactions of Nonferrous Metals Society of China
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.