Abstract

Multilevel technology is a good solution for medium- and high-voltage power conversion. There are three kinds of multilevel converters, namely diode clamped, capacitor clamped and cascade. Among them, capacitor-clamped multilevel converter is the most suitable topology for direct AC to AC conversion. This paper describes the modelling of a three-phase multilevel matrix converter with a capacitor-clamped topology having three flying capacitors per output phase. Venturini algorithm is used for generating gate pulses for this three-phase multilevel matrix converter, the application of which is different from the conventional three-phase single-cell matrix converter. Simulation results using the software PSCAD are presented. The simulation results for this three-phase multilevel matrix converter is compared with that for a three-phase conventional matrix converter and the total harmonic distortion in the two cases for the line to neutral output voltage, line to line output voltage and input current are tabulated. Simulation results indicate that the three-phase multilevel matrix converter has an improved performance compared to that of the three-phase conventional matrix converter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.