Abstract

This paper compares the economic viability and performance outcomes of two different thermoelectric device architectures to determine the advantages and appropriate use of each configuration. Hybrid thermoelectric coolers employ thin-film thermoelectric materials sandwiched between a plastic substrate and formed into a corrugated structure. Roll-to-roll manufacturing and low-cost polymer materials offer a cost advantage to the hybrid architecture at the sacrifice of performance capabilities while conventional bulk devices offer increased performance at a higher cost. Performance characteristics and cost information are developed for both hybrid and conventional bulk single-stage thermoelectric modules. The design variables include device geometry, electrical current input, and thermoelectric material type. The trade-offs between cooling performance and cost will be explored and the thermoelectric system configuration analyzed for both hybrid and conventional bulk thermoelectric coolers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.