Abstract

Different geometry patterns of the surface of thrust bearings have been proven very beneficial in terms of bearing load-carrying capacity and friction coefficient. In this study, four different types of sector-pad thrust bearings have been cross-evaluated for operation under realistic operating conditions: (a) an open pocket bearing, (b) a closed pocket bearing, (c) a tapered-land bearing, and (d) a bearing partially textured with rectangular dimples. Bearing performance has been computed by means of computational fluid dynamics simulations based on the numerical solution of the Navier–Stokes and energy equations for incompressible flow. Conjugate heat transfer at the bearing pad and rotor has been taken into account. Initially, for a reference design of each bearing, the effects of varying rotational speed and minimum film thickness have been investigated. Further, characterization of each bearing for a constant level of thrust load has been performed. Finally, the effects of varying the depth of each geometry pattern have been studied. The present results illustrate a superior performance of the open pocket bearing in comparison to the other bearing types.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.