Abstract

A three-dimensional electrocatalytic biofilter (3DEBF) was constructed to remove clofibric acid (CA). This study compared the effectiveness of 3DEBF and biological aerated filter (BAF) in the removal of refractory CA, examined the effects of influent CA concentrations (0.1, 0.3, 0.5, 0.7, and 1.0 mg/L) on microbial community, and proposed a possible 3DEBF degradation mechanism. Results indicated that the average removal efficiency of 3DEBF reached a peak (76.09%) at 0.7 mg/L, which was 14.43% higher than that of BAF. Based on the microbial community analysis, the significant enrichment of Rhodobacter, Mycobacterium, and Sphingopyxis in 3DEBF was associated with the effect of the CA concentration and the electric field. The degradation pathway indicated that xenobiotics biodegradation and metabolism, membrane transport and replication and repair related genes were upregulated in 3DEBAF. Moreover, CA degradation is based on a combination of adsorption, electrochemical oxidation, and biodegradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.