Abstract

Combined heat and power (CHP) involves on-site or near-site generation of electricity along with utilization of thermal energy available from the power generation process. CHP has the potential of providing a 30% improvement over conventional power plant efficiency and a CO 2 emissions reduction of 45% or more as compared to the US national average. In addition, an overall total system efficiency of 80% can be achieved because of the utilization of thermal energy that would be wasted if only the electric power were utilized, and because of the reduction of transmission, distribution, and energy conversion losses. The current research is being carried out in a four-story educational office building. This research focuses on the design, installation, and analysis of a modular CHP system consisting of a natural gas fired reciprocating engine generator with a liquid desiccant dehumidification system. The engine generator provides 75 kW of electric power to the building load bus while the combined waste heat from the exhaust gases and jacket water are used to regenerate the liquid desiccant. The liquid desiccant unit dehumidifies and cools the ventilation air to the building and supplies it to the mixed air section of the roof top unit. This paper discusses the various aspects involved in the design and installation of the system such as the heat recovery loop design and the electrical interconnection with the building load bus. Test results are also presented and the performance is compared to a traditional power plant with a conventional heating, ventilating, and air-conditioning system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call