Abstract

An experiment has been designed to characterize a solid-state pulsed power module (SSPPM) during the initial manufacturing cycle and then repeat the same characterization measurements after the module has gone through several sequences of 10B shots of normal operation in an excimer laser. The goal of such an experiment is to determine what, if any, degradation occurs during these extended periods and to assist in the development of expected module lifetimes that can then be used to estimate the cost of operation of the overall excimer laser. Initial component and subassembly measurements include the capacitance and Q of energy storage capacitors; the inductance and Q of bias, charging, and energy recovery inductors; the B-H characteristics of magnetic cores; insulation breakdown strength; connection resistance; and the general physical appearance of the unit. Operational measurements also compare the efficiency of each pulse compression stage, the repeatability and accuracy of diagnostics, thermal management parameters, and the recovery and on-state characteristics of the silicon-controlled rectifiers (SCRs) and diodes. Each of these items is monitored before testing and after each sequence of 10B shots has been completed. Results of the experiment are described.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.