Abstract

The harsh radiation environment in present and future high-energy physics experiments, such as the Large Hadron Collider (LHC), is a driving force for the development of high-voltage Si strip detectors. It is well known that mobile surface ions can affect the stability and long-term behaviour of Si detectors. These instabilities can be nearly eliminated and the performance of Si detectors can be improved by implementing suitably passivated metal-overhang structures. This paper presents the influence of the relative permittivity of the passivant on the breakdown performance of the Si detectors using computer simulations. The semi-insulator and the dielectric-passivated metal-overhang structures are compared under optimal conditions. Influence of the salient design parameters such as field oxide thickness, junction depth, metal-overhang width, and the surface charge on the breakdown performance of these structures are systematically analyzed, thus providing a comprehensive picture of the behaviour of metal-overhang structures and helping in the detector optimization task. The results presented in this paper clearly demonstrate the superiority of the metal-overhang structure design employing semi-insulator-passivated structures over dielectric-passivated ones in realizing a given breakdown voltage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.