Abstract

The development of one-part geopolymer mortars has greater potential than the traditional two-part mortars, especially in repair applications, to convert waste into useful beneficial products while simultaneously eliminating the hazards associated with the alkaline solutions. Nevertheless, the inherent brittleness exhibited by the one-part geopolymers displays drawbacks like OPC when subjected to flexural loading. The fibers selection as well as their strengthening effects from literature is considerably scarce, especially for the repairing geopolymer system. This work aims to investigate the influences of fiber types and volume fractions on the workability, physical behavior, and cracking/fatigue resistance of ambient air-cured one-part geopolymer mortar. Reaction kinetics, mineralogical phases, and elemental components were explored by means of the TAM, quantitative XRD, and EDS mapping analysis. The FESEM and X-CT were employed to compare the microstructures and pore characteristics of the fibers-reinforced products. The results show that the copper-plated steel fiber produced the least change in workability, while the basalt fiber produced the lowest flow values. Setting time was the shortest for the basalt fiber reinforced, followed by polyvinyl-alcohol fiber. The steel fiber and carbon fiber would improve the mechanical properties of mortar significantly, especially in the early stage. The fatigue strength of 1 vol% carbon fiber reinforced mortar under 2 million cycles loading was the highest (3.72 MPa). The fibers addition a substantial decrease in sphericity and compactness of the pores (high anisotropy) as evidenced by X-CT data. Moreover, three hydration heat processes occurred after water was added to the one-part geopolymer mortar, which included dissolution of Na2SiO3 particles, network degradation, and a second pozzolanic reaction. More crystalline formation occurred over curing time to form gel networks with high stability and generated different bonding modes with various fibers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.