Abstract

Abstract An annular diffuser is a critical component of the turbomachinery, and its prime function is to reduce the flow velocity. The current work is carried to study the effect of four different geometrical designs of an annular diffuser using the ANSYS Fluent. The numerical simulations were carried out to examine the effect of fully developed turbulent swirling and non-swirling flow. The flow behavior of the annular diffuser is analyzed at Reynolds number 2.5 × 105. The simulated results reveal pressure recovery improvement at the casing wall with adequate swirl intensity at the diffuser inlet. Swirl intensity suppresses the flow separation on the casing and moves the flow from the hub wall to the casing wall of the annulus region. The results also show that the Equal Hub and Diverging Casing (EHDC) annular diffuser in comparison to other diffusers has a higher static pressure recovery (C p = 0.76) and a lower total pressure loss coefficient of (C L = 0.12) at a 17° swirl angle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.