Abstract

In this study, the performance characteristics of electro-cyclone with different inlet shapes, such as helical, tangential and involute, were experimentally investigated. The range of particle size has 0.3 to 6 μm and the inlet velocities are 10, 15, 20, and 25 m/s. Particles used in this experiment are JIS Class 11 test powder which have the density of 1.9~2.1 g/cm3 and the mass median diameter of 2.3 μm. An electrocyclone has discharge wire which was inserted in the middle of vortex-finder. The length, diameter and material of discharge wire have 20 mm, 0.6 mm and SUS304, respectively. The discharge wire was applied with a voltage of 10 kV. The collection efficiency is calculated by the particle size distribution of the upstream and downstream using a laser optical particle counter. Pressure drops were measured between two pressure taps which were located at the inlet and outlet ducts of electrocyclone using a micromanometer. For the case of the involute type, due to a minimum turbulence, the retention time of particles becomes long in electrocyclone and particles have more chances to be charged. However, the experimental results show that a helical shape has a better collection effect than the other shapes. And the pressure drop of the involute shape for a given inlet velocity is smaller than the other shapes. The collection efficiency and the pressure drop with various inlet shapes and velocity changes in electrocyclone are graphically depicted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call