Abstract

In this work, we investigate the performance characteristics of our continuous miniature crystal element detector (cMiCE). Versions with a 25 mm by 25 mm by 4 mm thick LSO crystal and with a 50 mm by 50 mm by 8 mm thick LSYO crystal were evaluated. Both detectors utilized a 64-channel flat panel photomultiplier tube (PMT). The intrinsic spatial resolution for the detectors was evaluated using standard Anger positioning and a statistics based positioning (SBP) algorithm. We also examined the effect different reflective materials applied on the entrance surface had on the intrinsic resolution for the 8 mm LYSO crystal. The average energy resolution was 20% for the 4 mm thick LSO crystal and 16% - 21% for the 8 mm thick LYSO crystal. The average intrinsic spatial resolution for the 4 mm thick crystal was 1.8 mm full width at half maximum (FWHM) for Anger positioning to within 3 mm of the crystal's edge and 1.14 mm FWHM for SBP to within 2 mm of the edge. The average intrinsic spatial resolution for the 8 mm thick crystal was 2.2 mm FWHM for Anger positioning to within 8 mm of the crystal's edge and 1.3-1.5 mm FWHM (depending on the reflective material used) for SBP to within 2 mm of the edge. Intrinsic spatial resolution is reported without correcting for point source size. The point spot flux had a FWHM of -0.52 mm. Using the SBP algorithm showed significant improvement in spatial resolution, linearity of positioning result, and effective field of view for our cMiCE detector

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call