Abstract

Aerostatic journal bearing applications mainly focus on high-speed precision machining, so predictable and smooth functioning of the system is crucial. Air is supplied to the bearing through a number of orifices and any unevenness in the size of these orifices will affect the performance of the system. The size difference could be due to manufacturing error and/or blockage of the orifice because of foreign materials in the air system. In this study, the performance of an aerostatic bearing with a partially blocked orifice is numerically investigated. Firstly, the airflow in the bearing clearance was modeled with Reynolds equation and this equation was numerically solved with the finite difference and differential transform hybrid method to obtain the pressure distribution. Then, the force and the stiffness are calculated from the pressure distribution for different blockage cases of the orifice and different blockage ratios. The results show that the partial blockage of the orifice significantly changes the performance of the system in a positive or a negative way according to the feeding hole position, and the blockage ratio also affects performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.