Abstract

The results of an experimental investigation of the energy separation performance of a microscale Ranque–Hilsch vortex tube are presented. The supply channel Reynolds number of a microscale Ranque–Hilsch vortex tube is varied over a considerable range, which extends into the laminar flow regime in order to determine the minimum conditions for cooling. Experiments are conducted for a fixed geometry and control valve setting. At low Reynolds numbers based on the inlet tube hydraulic diameter and average velocity, the results exhibit an increase in dimensionless temperature in both the hot and cold outlets as the Reynolds number is increased from zero, reaching maximum values below 500 and 1000, respectively. The hot outlet dimensionless temperature decreases after reaching its maximum and achieves a minimum value at a Reynolds number below 1500. It then increases steadily with further increases in Reynolds number. The cold outlet dimensionless temperature decreases steadily after the maximum to become negative at a Reynolds number of approximately 1800. This implies that the cooling effect occurs at Reynolds numbers consistent with turbulent flow. The performance characteristics of the microscale vortex tube operating at higher inlet pressures of 200kPa, 300kPa, and 400kPa with an average inlet temperature of 293.6K are also presented for cold air mass ratio values over the range of 0.05–0.95. An increase in the inlet pressure causes the values of the dimensionless cold temperature difference to increase over the whole range of the cold air mass fraction. An unstable operation is observed at a length to diameter ratio of approximately 10, causing radial mixing between the cold and hot flow streams and a dramatic change in the cold mass flow fraction plot.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call