Abstract
The measurement accuracies of modern resonance fluorescence and Rayleigh temperature lidars are limited primarily by photon noise. The narrowband three-frequency fluorescence technique is shown to perform within a few decibels of the theoretical optimum at night for both temperature and wind observations. These systems also exhibit good performance during the day because the fluorescence wavelengths of Na, Fe, K, Ca, and Ca+ all correspond to strong solar Fraunhofer lines, where sky brightness is attenuated by a factor of 5 or more. Whereas Na systems achieve the highest signal-to-noise ratios for mesopause region observations (80-105 km), the three-frequency Fe system is attractive because it performs well as both a fluorescence and a Rayleigh lidar throughout the middle atmosphere at approximately 25-110 km.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.