Abstract

This paper on performance analysis of parameter estimation is motivated by a practical consideration that the data length is finite. In particular, for time-varying systems, we study the properties of the well-known forgetting factor least-squares (FFLS) algorithm in detail in the stochastic framework, and derive upperbounds and lowerbounds of the parameter estimation errors (PEE), using directly the finite input-output data. The analysis indicates that the mean square PEE upperbounds and lowerbounds of the FFLS algorithm approach two finite positive constants, respectively, as the data length increases, and that these PEE upperbounds can be minimized by choosing appropriate forgetting factors. We further show that for time-invariant systems, the PEE upperbounds and lowerbounds of the ordinary least-squares algorithm both tend to zero as the data length increases. Finally, we illustrate and verify the theoretical findings with several example systems, including an experimental water-level system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.