Abstract

To achieve a high spectrum efficiency in cellular radio systems, the radio resource allocation algorithms have to be adaptive to the actual traffic and interference situation. The focus of the paper is on performance bounds of a cellular radio system using dynamic channel assignment (DCA) combined with power control (PC). A trivial upper bound on the performance is identified. The bound is given by the performance of a hypothetical system which is able to use all channels simultaneously in all cells. A lower bound on the performance is derived from a theoretical PC supported DCA-algorithm. For a highway micro cellular system and a deterministic propagation model, numerical results show that the lower and upper bounds are tight. That is, the results indicate that it is possible to use all channels in all cells simultaneously and still provide an acceptable signal-to interference ratio in all assigned communication links.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call