Abstract
Blind equalization attempts to remove the interference caused by a communication channel without using any known training sequences. Blind equalizers may be implemented with linear prediction-error filters (PEFs). For many practical channel types, a suitable delay at the output of the equalizer allows for achieving a small estimation error. The delay cannot be controlled with one-step predictors. Consequently, multistep PEF-based algorithms have been suggested as a solution to the problem. The derivation of the existing algorithms is based on the assumption of a noiseless channel, which results in zero-forcing equalization. We consider the effects of additive noise at the output of the multistep PEF. Analytical error bounds for two PEF-based blind equalizers in the presence of noise are derived. The obtained results are verified with simulations. The effect of energy concentration in the channel impulse response on the error bound is also addressed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.