Abstract

This brief investigates the performance benefits of using inerter in semiactive suspensions. A novel structure for semiactive suspensions with inerter, which consists of a passive part and a semiactive part, is proposed. Six semiactive suspension struts, each of which employs an inerter in the passive part and a semiactive damper in the semiactive part, are introduced. Two suboptimal control laws named clipped optimal control and steepest gradient control laws are derived to control the damping coefficient in the semiactive part. Extensive simulations with respect to different choices of weighting factors and suspension static stiffnesses are conducted based on both a quarter car model and a full car model. The results show that, compared with the conventional semiactive suspension strut, the overall suspension performance can be significantly improved using inerters, including ride comfort, suspension deflection, and road holding. Comparative studies between these two suboptimal control laws and between these semiactive struts are also carried out to facilitate future practical application of the proposed semiactive suspensions with inerter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call