Abstract
Abstract It is widely recognized that the most rational way of assessing and reducing the risks of engineered facilities and infrastructures subject to natural and man-made phenomena, both in the design of new facilities and in the rehabilitation or retrofitting of existing ones, is Performance-Based Design, usually indicated by the acronym PBD (but a better term would be “Performance-Based Engineering”). The first formal applications of PBD were devoted to seismic engineering and design; later it has been extended to other engineering fields, like Blast Engineering and Fire Engineering. Wind Engineering has appeared of great potential interest for further developments of PBD. The expression “Performance-Based Wind Engineering” (PBWE) was introduced for the first time in 2004 by an Italian research project. In this paper, the approach proposed by the Pacific Earthquake Engineering Research Center (PEER) for Performance-Based Earthquake Engineering is extended to the case of PBWE. The general framework of the approach is illustrated and applied to an example case: the assessment of the collapse and out-of-service risks of a long span suspension bridge. A discussion of the open problems and the relevance of various sources of uncertainty conclude the paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.