Abstract

AbstractPerformance-based seismic design aims to dictate the structural performance in a predetermined fashion given the possible seismic hazard scenarios the structure is likely to experience. Identifying and assessing the probable performance is an integral part of performance-based design. Before implementation, accurate and practical definitions of different performance levels and corresponding limit states must be determined. This study aims to develop performance-based damage states for shape memory alloy (SMA)–reinforced concrete (RC) bridge piers considering different types of SMAs and seismic hazard scenarios. Using incremental dynamic analysis (IDA), this study develops quantitative damage states corresponding to different performance levels (cracking, yielding, and strength degradation) and specific probabilistic distributions for RC bridge piers reinforced with different types of SMAs. Based on an extensive numerical study, this study also proposes residual drift–based damage states for SMA-RC...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call