Abstract

This paper presents a performance-based analysis (PBA) technique based on fiber element formulations for the nonlinear analysis and performance-based design of thin-walled concrete-filled steel tubular (CFST) beam–columns with local buckling effects. Geometric imperfections, residual stresses and strain hardening of steel tubes and confined concrete models are considered in the PBA technique. Initial local buckling and effective strength/width formulas are incorporated in the PBA program to account for local buckling effects. The progressive local buckling of a thin-walled steel tube filled with concrete is simulated by gradually redistributing normal stresses within the steel tube walls. Performance indices are proposed to quantify the section, axial ductility and curvature ductility performance of thin-walled CFST beam–columns under axial load and biaxial bending. Efficient secant algorithms are developed to iterate the depth and orientation of the neutral axis in a thin-walled CFST beam–column section to satisfy equilibrium conditions. The analysis algorithms for thin-walled CFST beam–columns under axial load and uni- and biaxial bending are presented. The PBA program can efficiently generate axial load–strain curves, moment–curvature curves and axial load–moment strength interaction diagrams for thin-walled CFST beam–columns under biaxial loads. The proposed PBA technique allows the designer to analyze and design thin-walled CFST beam–columns made of compact or non-compact steel tubes with any strength grades and normal and high-strength concrete. The verification and applications of the PBA program are given in a companion paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.