Abstract
The present study evaluates the accuracy of SNAP-Sentinel-2 Prototype Processor (SL2P) derived Leaf Area Index (LAI) and proposes a new simple method to generate new datasets of LAI through data fusion. Rigorous optimization of the data fusion approaches (Kalman filter and Linear weighted) were performed for the generation of new LAI products over the complex hilly terrain of the Himalayan region. The results showed a good correlation (r = 0.79) and low error (RMSE = 1.63) between SNAP-derived (at 20 m) and ground-observed LAI. A lower correlation was obtained between the ground observed LAI data and the corresponding global LAI products for the Moderate Resolution Imaging Spectroradiometer (MODIS) (r = 0.1, RMSE = 1.19), Copernicus Global Land Service (CGLS) (r = 0.1, RMSE = 0.61) and the Visible Infrared Imaging Radiometer Suite (VIIRS) (r = 0.04, RMSE = 1.25). Notably, after implementing the data fusion, both SNAP-derived LAI and Global LAI products exhibited much-improved performance statistics with ground observed data sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.