Abstract

Atmospheric radioxenon levels are monitored worldwide by the Comprehensive Nuclear-Test-Ban Treaty Organisation (CTBTO) to detect emissions from nuclear explosions. This paper examines the global network that has been set up to take routine air samples and to determine the atmospheric radioxenon concentrations. It is hypothesised that the monitoring system aims at the detection and localisation of radioxenon releases. Both capabilities are dependent on background levels, explosive yields, leakage rates, transport time, choice of xenon isotope and number and locations of monitoring stations. For each parameter, the global capabilities to detect and localise emissions from nuclear explosions are analysed. Recommendations for the future of the background sources and the development of the monitoring system are derived.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.