Abstract

In the current work a detailed investigation and a performance assessment of two eddy viscosity and two Reynolds stress turbulence models for modelling the transitional flow on a double circular arc (DCA) compressor blade is presented. The investigation is focused on the comparison of the obtained computational results with available experimental data for a specific DCA compressor blade cascade which can be found in the European Research Community on Flow, Turbulence and Combustion (ERCOFTAC) experimental database. The examined flow field is very challenging for the performance assessment of the turbulence models. The blade inlet angle departs +5° from the compressor blade design conditions resulting in a complex flow field having large regions of boundary layer transition both on the suction and pressure sides of the blade with the presence of an unsteady wake. The presented results include velocity and turbulence intensity distributions along the pressure, the suction sides, and the wake region of the blade. From the comparison with the available experimental data, it is evident that in order to accurately compute such complex velocity and turbulence fields that are met in aero engine components (compressors and turbines), it is obligatory to use more advanced turbulence models with the Unsteady Reynolds Averaged Navier Stokes Equations (URANS) adoption, or other simulation and hybrid methodologies which require unsteady calculations.

Highlights

  • IntroductionThe accurate prediction of the flow development inside various stations in an aero engine (e.g., compressor and turbine stages, intakes, nozzles, combustors, heat exchangers) is of great interest to aero engine designers since the understanding of the flow underlying physics and its development are critical in order to enhance their operational performance and provide efficient aero engines architectures

  • The accurate prediction of the flow development inside various stations in an aero engine is of great interest to aero engine designers since the understanding of the flow underlying physics and its development are critical in order to enhance their operational performance and provide efficient aero engines architectures

  • The SSG-Reynolds stress models (RSM) model was able capture flow unsteadiness due to vortex shedding from the trailing edge and Unsteady Reynolds Averaged Navier Stokes Equations (URANS) were to capture flow unsteadiness due to vortex shedding from the trailing edge and URANS were imposed

Read more

Summary

Introduction

The accurate prediction of the flow development inside various stations in an aero engine (e.g., compressor and turbine stages, intakes, nozzles, combustors, heat exchangers) is of great interest to aero engine designers since the understanding of the flow underlying physics and its development are critical in order to enhance their operational performance and provide efficient aero engines architectures. As presented in [2], the authors utilized zero and two equation turbulence models and provided a comparison to experimental data for axial turbomachinery flows (compressors and turbine blades), and it was proved that the adopted models provided results closer to the experiments, concluding that for the accurate modelling of such kind of flows, extension to transitional and higher order turbulence models are necessary. Unsteady Reynolds Averaged Navier Stokes Equations (URANS) computations by adopting the linear k-ω and k-ε models and available experimental data for the flow of an axial compressor stage, stating that the better understanding of the unsteady flow that is met in turbomachinery components is of great importance for efficient aero engine components design. A detailed performance assessment of three turbulence models regarding their accuracy in modelling a complex unsteady flow field around a Double Circular Arc (DCA) compressor blade are presented. Additional detailed information regarding the blade geometrical characteristics, the overall experimental procedure that was followed, and the concluding results of the experimental campaign can be found in [12,13]

Turbulence Modelling
Computational
Experimental measurement stations onon thethe
Turbulence Modelling Results
The DCA Pressure Side
As it can be seen all the models
Turbulence intensity distributions distributions on on the the DCA
DCA Wake Region
11. Instantaneous
Discussion and Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.