Abstract

Pressurized stair cases are an important part of the fire safety strategy of high rise buildings. Long egress times are compensated by creating safe environments within egress staircases allowing the displacement time within those stairs as time where occupants can be considered safe. The main mechanisms by which stairs are “made safe” are by guaranteeing structural protection of the enclosure and by elevating the pressure within the stair to ensure that smoke cannot enter. Despite the critical importance of this element of the fire safety strategy, the analysis and implementation of these systems remain simplified. Simple models have been developed using Bernoulli type formulations that account for static pressure and empirical constants to calculate flows through doors and other leakage areas. Implementation of these systems is even more simplified, consisting mainly of a direct feedback loop that controls a fan output on the basis of a pressure measurement inside the stair. The flow induced by the fan guarantees a minimum pressure. The pressure inside the stair needs to be limited to enable doors to be open, thus pressure dampers are introduced to release airflow in the event the pressure exceeds a specified maximum. Validation of these methodologies was done in the 70s and 80s with very limited field validation in real systems. This study presents an assessment of the performance of pressurized staircases in six high rise buildings. All systems have been designed using a similar methodology but implemented in different ways. In all cases the control mechanism for the fan is a direct feedback loop from a single pressure sensor. The results have been evaluated showing the limitations of the control system in the event of multiple doors being opened and the limitations of the pressure release dampers (as a response mechanism) if the pressure becomes unstable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call