Abstract
Numerical methods have been widely used to simulate transient groundwater flow induced by pumping wells in geometrically and mathematically complex systems. However, flow and transport simulation using low-order numerical methods can be computationally expensive with a low rate of convergence in multi-scale problems where fine spatial discretization is required to ensure stability and desirable accuracy (for instance, close to a pumping well). Numerical approaches based on high-order test functions may better emulate the global behavior of parabolic and/or elliptic groundwater governing equations with and without the presence of pumping well(s). Here, we assess the appropriateness of high-order differential quadrature method (DQM) and radial basis function (RBF)-DQM approaches compared to low-order finite difference and finite element methods. This assessment is carried out using the exact analytical solution by Theis and observed head data as benchmarks. Numerical results show that high-order DQM and RBF-DQM are more efficient schemes compared to low-order numerical methods in the simulation of 1-D axisymmetric transient flow induced by a pumping well. Mesh-less RBF-DQM, with the ability to implement arbitrary (e.g., adaptive) node distribution, properly simulates 2-D transient flow induced by pumping wells in confined/unconfined aquifers with regular and irregular geometries, compared to the other high-order and low-order approaches presented in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.