Abstract

This letter focuses on comparing manufacturing features of three-dimensional (3-D) printing techniques versus conventional computer numerical control (CNC) milling in the context of gap waveguide technology. To this end, a single-layer array antenna has been designed as a demonstrator. The antenna under test, intended for Ka-band, is composed of 8 $\times$ 8 radiators fed by a gap-waveguide (GW) corporate network. Two identical prototypes have been manufactured, but each applying a different fabrication technique, i.e., 3-D printing and CNC milling. The experimental results of both antennas are presented, under the same conditions and measurement facilities. The conclusions drawn in this letter provide a valuable assessment of 3-D-printing viability for GW arrays against the conventional milling technique.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call