Abstract

FY-3C/MERSI has some remarkable improvements compared to the previous MERSIs including better spectral response function (SRF) consistency of different detectors within one band, increasing the capability of lunar observation by space view (SV) and the improvement of radiometric response stability of solar bands. During the In-orbit verification (IOV) commissioning phase, early results that indicate the MERSI representative performance were derived, including the signal noise ratio (SNR), dynamic range, MTF, B2B registration, calibration bias and instrument stability. The SNRs at the solar bands (Bands 1–4 and 6-20) was largely beyond the specifications except for two NIR bands. The in-flight calibration and verification for these bands are also heavily relied on the vicarious techniques such as China radiometric calibration sites(CRCS), cross-calibration, lunar calibration, DCC calibration, stability monitoring using Pseudo Invariant Calibration Sites (PICS) and multi-site radiance simulation. This paper will give the results of the above several calibration methods and monitoring the instrument degradation in early on-orbit time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call