Abstract

The most effective geometry for design electrode and the advantage of low cost equipment in ultrasonic-aided electrochemical finishing for a freeform surface following turning machining was investigated. The proposed design process used an effective electrode instead of the mate electrode as in conventional ECM. Hence higher electrical current is not required when the effective design electrode is used to reduce the response area. Through simple equipment attachment, electrochemical finishing can follow the traditional cutting on the same machine. The controlled factors included the chemical composition and concentration of the electrolyte, the initial gap width, the flow rate of electrolyte, workpiece rotational speed, and die material. The design electrode is primarily discussed among the factors affecting the electrochemical finishing. The experimental parameters were current rating, electrode feed rate, frequency , power level of ultrasonics, and electrode geometry. The effective design electrode with small wedge angle and small edge rounding radius had an optimal value for higher current density and provided larger discharge space, which produce a smoother surface. The electrode of globe-shape with small radius performed best in the finishing process. The electrochemical finishing needed only a short time to make the workpiece smooth and bright and save the need for the precise process of traditional machining. The ultrasonic-aided electrochemical finishing is recommended for the finishing process of the freeform surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call