Abstract

In recent years, lung cancer incidents are very high with equally high mortality rate. The main reason for fatal incidences is the late diagnosis and confirmation of the disease at an advanced stage. Identification of the disease at an early stage using lung Computed Tomography (CT) offers tremendous scope for timely medical intervention. The article illustrates the use of deep transfer learning-based pre-trained models for the diagnosis of Non-Small Cell Lung Cancer (NSCLC). The datasets were chosen from Chest CT Scan Images and the Lung Image Database Consortium (LIDC), containing over 3,179 images depicting three NSCLC types, namely, normal, adenocarcinoma, squamous cell carcinoma, and large cell carcinoma. The process is designed to measure the accuracy of NSCLC detection with an experimental dataset using approaches with and without pre-processing of lung images. The transfer learning models use deep learning and produce good results in prediction and classification. The image dataset was first handled by the convolutional neural networks DenseNet121, ResNet50, InceptionV3, VGG16, Xception, and VGG19. As a second phase, input images were subjected to contrast/brightness enhancement using Multi Level Dualistic Sub Image Histogram Equalization (ML-DSIHE). Enhanced images were further processed using shape-based feature extraction. Finally, those features input to CNN models and the results recorded. Among these models, VGG16 achieved the highest accuracy of 81.42% using the original dataset and 91.64% with the enhanced dataset. The performance of these two approaches was also evaluated using Precision, Recall, F1-Score, Accuracy, and Loss. It is confirmed that VGG16 gives highly reliable accuracy when trained upon enhanced images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.