Abstract

There is no single solution to cutting emissions, however, renewable energy projects that are backed by rigorous ex-ante assessments play an important role in these efforts. An inspection of literature reveals critical knowledge gaps in the understanding of future wind speed variability across Zambia, thus leading to major uncertainties in the understanding of renewable wind energy potential over the country. Several model performance metrics, both statistical and graphical were used in this study to examine the performance of CORDEX Africa Regional Climate Models (RCMs) in simulating wind speed across Zambia. Results indicate that wind speed is increasing at the rate of 0.006 m s− 1 per year. RCA4-GFDL-ESM2M, RCA4-HadGEM2-ES, RCA4-IPSL-CM5A-MR, and RCA4-CSIRO-MK3.6.0 were found to correctly simulate wind speed increase with varying magnitudes on the Sen’s estimator of slope. All the models sufficiently reproduce the annual cycle of wind speed with a steady increase being observed from April reaching its peak around August/September and beginning to drop in October. Apart from RegCM4-MPI-ESM and RegCM4-HadGEM2, the performance of RCMs in simulating spatial wind speed patterns is generally good although they overestimate it by ~ 1 m s− 1 in the western and southern provinces of the country. Model performance metrics indicate that with a correlation coefficient of 0.5, a root mean square error of 0.4 m s− 1, an RSR value of 7.7 and a bias of 19.9%, RCA4-GFDL-ESM2M outperforms all other models followed by RCA4-HadGEM2, and RCA4-CM5A-MR respectively. These results, therefore, suggest that studies that use an ensemble of RCA4-GFDL-ESM2M, RCA4-HadGEM2, and RCA4-CM5A-MR would yield useful results for informing future renewable wind energy potential in Zambia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.