Abstract
Accurate long-term estimates of precipitation at fine spatiotemporal resolution are vital for several applications ranging from hydrometeorology to climatology. The availability of a good network of rain gauges, and high precipitation variability associated with two annual monsoon systems and complex topography make India a suitable test-bed to assess the performance of any satellite-based precipitation product. This study assesses the performance of latest versions of four multi-satellite precipitation products: (i) Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), (ii) Multi-Source Weighted-Ensemble Precipitation (MSWEP), (iii) SM2RAIN-Climate Change Initiative (SM2RAIN-CCI), and (iv) TRMM Multisatellite Precipitation Analysis (TMPA) across India using gauge-based observations for the period of 1998–2015 at monthly scale. These four multi-satellite precipitation products are essentially based on different algorithms and input data sets. Among these multi-satellite precipitation products, SM2RAIN-CCI is the only product that does not use rain gauge observations for bias adjustment. Results indicate that CHIRPS and TMPA are comparable to gauge-based precipitation estimates at all-India and sub-regional scales followed by MSWEP estimates. However, SM2RAIN-CCI largely underestimates precipitation across the country as compared to gauge-based observations. The systematic error component in SM2RAIN-CCI dominates as compared to random error component, which suggests the need of a suitable bias correction to SM2RAIN-CCI before integrating it in any application. The overall results indicate that CHIRPS data set could be used for long-term precipitation analyses with rather higher confidence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.