Abstract

An enormous amount of municipal waste is produced globally and a large proportion of this waste is dumped into the landfill that is now about to reach the maximum capacity and makes it obligatory to investigate alternative methods for waste treatment. This study proposes a novel design to treat the organic fraction municipal solid waste (OFMSW) to generate electricity using solid oxide fuel cells (SOFC). The detailed process simulation is conducted using the standard chemical process simulator Aspen Plus which predicts the electricity that is generated using the OFMSW as feedstock. The biogas from the system is employed to the reformer that produces syngas and this mixture of hydrogen and carbon monoxide is fed to the SOFC with air to generate electricity. The detailed characterization of the proposed system is conducted and numerous sensitivity analyses are performed to investigate the system performance. The study also employs a detailed technical and economic feasibility of the biogas-fed SOFC system for municipal solid waste treatment. The proposed design employs 1,000 Nm3/hr of biogas flow rate that produces 3,633 kW of DC power using SOFC. The thermal management of the designed system is also performed to recover the additional heat within the designed system. A detailed techno-economic feasibility study is conducted for the proposed system and the capital and operating expenditures, income and depreciation costs are also evaluated. The economic and cash flow analyses show that the plant is suitable for a long-term scenario. It has been predicted that if the electricity price increase to 130 $/MWh, it will take 5 years as a payback period for the long-term scenario. Furthermore, the results obtained from the sensitivity studies and techno-economic analysis are presented and discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call